Reinforcement Learning with Perturbed Rewards
نویسندگان
چکیده
منابع مشابه
Reinforcement Learning Without Rewards
Machine learning can be broadly defined as the study and design of algorithms that improve with experience. Reinforcement learning is a variety of machine learning that makes minimal assumptions about the information available for learning, and, in a sense, defines the problem of learning in the broadest possible terms. Reinforcement learning algorithms are usually applied to “interactive” prob...
متن کاملMulti-Agent Reinforcement Learning with Vicarious Rewards
Reinforcement learning is the problem faced by an agent that must learn behaviour through trial-and-error interactions with a dynamic environment. In a multi-agent setting, the problem is often further complicated by the need to take into account the behaviour of other agents in order to learn to perform effectively. Issues of coordination and cooperation must be addressed; in general, it is no...
متن کاملLearning Robust Rewards with Adversarial Inverse Reinforcement Learning
Reinforcement learning provides a powerful and general framework for decision making and control, but its application in practice is often hindered by the need for extensive feature and reward engineering. Deep reinforcement learning methods can remove the need for explicit engineering of policy or value features, but still require a manually specified reward function. Inverse reinforcement lea...
متن کاملInverse Reinforcement Learning with Simultaneous Estimation of Rewards and Dynamics
Inverse Reinforcement Learning (IRL) describes the problem of learning an unknown reward function of a Markov Decision Process (MDP) from observed behavior of an agent. Since the agent’s behavior originates in its policy and MDP policies depend on both the stochastic system dynamics as well as the reward function, the solution of the inverse problem is significantly influenced by both. Current ...
متن کاملOnline learning of shaping rewards in reinforcement learning
Potential-based reward shaping has been shown to be a powerful method to improve the convergence rate of reinforcement learning agents. It is a flexible technique to incorporate background knowledge into temporal-difference learning in a principled way. However, the question remains of how to compute the potential function which is used to shape the reward that is given to the learning agent. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i04.6086